

LOT #190 **Data Analytics Tool Patents**

1851/1794

14010

BID-ASK MARKET®

61310

468172

1866

MimamsuProPlus is a tool to create dataset from relational database as well as run and append statistics to the dataset.

A Data Analytics tool to <u>create dataset(with metadata) in terms of objects and attributes from relational database (US Patent: 9,384,240)</u>, perform statistical analysis, append the statistics to dataset and <u>create interactive object relationships summary (US Patent: 11,693,890 and 11,954,110</u>). In addition to the basic features, MimamsuProPlus also includes Pathrunner feature to <u>derive and update object relationships (US Patent: 8,898,197</u>).

(Components)

MimamsuProPlus is made of four components (DORM Studio, Store, Analysis Tool and Dataset Tool). DORM Studio is a facility to create Data Object Relationship Map (DORM) of relational database in terms of objects and attributes. Store is a facility to create dataset/s (with metadata). Analysis Tool is a facility to perform statistical analysis, and append the statistics to the dataset. Dataset Tool is to create subset and/or filter the dataset.

(Application Flow)

Create Relationship Object Instances: Derive object relations (i.e. Relationship Object instances) by <u>bi-directionally, iteratively and exhaustively</u> traversing (by means of SQL) all alternate relationship paths between all pairs of related objects.

<u>Example</u>: Original state of the database containing tables for objects Obj_A, Obj_B, Obj_C, Obj_D and relationship objects relating the four objects (Fig.1). In this state the table for relationship object Robj_AC has two ID columns representing relationship between two objects Obj_A and Obj_C; the table has one row representing relation between instances of Obj_A and Obj_C (A_ID = $102 <-> C_ID = 101$).

Alternate paths between Obj_A and Obj_C are 1) Robj_AB <-> Robj_BC, 2) Robj_AD <-> Robj_DC, 3) Robj_AB <-> Robj_BC <-> Robj_CD and 4) Robj_AD <-> Robj_BD <-> Robj_BD <-> Robj_BC.

After bi-directionally, iteratively and exhaustively traversing all alternate paths between all pairs of related objects, state of the database is as shown in Fig.2. In this state table for Robj_AC contains additional rows representing derived relations (A_ID = 101 <-> C_ID = 101, A_ID = 101 <-> C_ID = 102, A_ID = 101 <-> C_ID = 103, A_ID = 101 <-> C_ID = 104). Similarly tables for Robj_AD and Robj_CD has additional rows (encircled in red) representing derived relations between respective pairs of objects.

Patent: 9,384,240 (Fig.5 & 6)

Create Dataset from Relational Database: Present relational database content in terms of objects/attributes(Fig. 5); and based on user selection of object attributes create dataset table (Fig. 6).

<u>Example</u>: The database contains tables for objects Obj_A, Obj_B, Obj_C, Obj_D and relationship objects Robj_AB, Robj_BC, Robj_CD, Robj_AD, Robj_AC and Robj_BD relating the four objects (Fig.3). Using DORM (Data Object Relationship Map) Studio facility two metadata tables are created (Fig.4); the metadata tables contains information about the four objects, six relationship objects and attributes of the objects.

Using the DORM metadata tables user is presented with the database content in terms of Objects and Attributes in the form of a menu (Fig. 5).

User selection of attributes is A_COL1, B_COL1, B_COL2 and D_COL1 of Obj_A, Obj_B and Obj_D. A dataset table (Fig.6) containing selected attributes and ID attributes of the objects is created by means of generating and executing <u>SQL code for</u> corresponding <u>SQL UNION of SQL JOINs of all combinations</u> (from largest to smallest), of selected objects including non-related instances of selected objects. In Fig.6, rows 1 to 4 represents related instances of Obj_A, Obj_B and Obj_D; rows 5 and 6 represents related instances of Obj_A and Obj_D; rows 7 to 9 represents related instances of Obj_A and Obj_D; rows 10 and 11 represents instances of Obj_B which are not related to any instance of Obj_A or Obj_D; and row 12 represents instance of Obj_D.

Objects/Attributes	Na	me NEWSELECTION			OBJ_A A_ID	OBJ_B B_ID	OBJ_D D_ID	OBJ_A A_COL1	OBJ_B B_COL1	OBJ_B B_COL2	OBJ_D D_COL1
Obj_A	Descript	ion New Selection		1	101	101	101	AA1	BB1	321	DD1
	Obj	ect		2	101	102	101	AA1	BB2	231	DD1
▼ Obj_B	Attrib	ute		3	101	102	103	AA1	BB2	231	DD3
B_COL1	7100110			4	101	102	104	AA1	BB2	231	DD4
B_COL2	Opt	ion All		5	102	103		AA2	BB3	123	
B_COL3	Add			6	103	103		AA3	BB3	123	
B_COL4				7	102		101	AA2			DD1
▼ Obj_C	(DBJECT	ATTRIBUTE	8	103		102	AA3			DD2
	1 (DRT_T	A_COL1	9	104		102	AA4			DD2
▼ Obj D	2 ()BJ_D_	D_COL1	10		104			BB4	312	
	3 ()BJ_B_	B_COL3	11		105			BB5	213	
D_COL2	4 (DBJ_B_	B_COL4	12		100	105				DD5

Fig. 5

Object Relations Metadata Table TABLE FROM DB TABLE FROM TABLE TO TABLE_FROM_KEY TABLE_TO_KEY TABLE_TO_KEY2 A_ID a static A_ID rdom a static rdom C_ID C_ID rdom c_static rdom c_static D_ID D_ID NULL rdom d_static rdom d_static D_ID rdom a_static rdom ad_static A_ID A_ID D_ID A_ID D_ID rdom d_static rdom ad_static A_ID C_ID C_ID rdom a_static rdom ac static A_ID A_ID rdom c_static rdom ac_static C_ID rdom b_static rdom b_static B_ID B_ID NULL B_ID NULL rdom b_static rdom b_aperiodic B_ID A_ID B_ID rdom a_static ab_static A_ID rdom B_ID A_ID B_ID rdom b_static rdom ab_static B_ID C_ID rdom b_static rdom bc_static B_ID bc_static C_ID C ID B ID rdom c_static rdom

Attribute Metadata Table

ATTR_DB	ATTR_DOBJ	ATTR_DOBJ_DESC	ATTR_TABLE	ATTR_CATGRY	ATTR_NAME	ATTR_DESC
rdom	OBJ_A_	Obj_A	a_static	S	A_COL1	A_COL1
rdom	OBJ_A_	Obj_A	a_static	S	A_COL2	A_COL2
rdom	OBJ_C_	Obj_C	c_static	S	C_COL1	C_COL1
rdom	OBJ_C_	Obj_C	c_static	S	C_COL2	C_COL2
rdom	OBJ_D_	Obj_D	d_static	S	D_COL1	D_COL1
rdom	OBJ_D_	Obj_D	d_static	S	D_COL2	D_COL2
rdom	OBJ_B_	Obj_B	b_static	S	B_COL1	B_COL1
rdom	OBJ_B_	Obj_B	b_static	S	B_COL2	B_COL2
rdom	OBJ_B_	Obj_B	b_aperiodic	C	B_COL3	B_COL3
rdom	OBJ_B_	Obj_B	b_aperiodic	С	B_COL4	B_COL4

Fig. 4

Patent: 11,693,890 (Fig.8 & 9)

Create Object Relations Summary: Create and present counts of object instances and related object instances in an interactive form.

Example: The dataset table (Fig.7) contains columns for three object IDs (i.e. A_ID, B_ID and D_ID) and attributes of the objects.

Object relations summary (Fig.8) shows, in the area (box) at the top, total number of objects' instances in the dataset. Boxes starting from second row and first column, shows counts for exclusively related instances of all combinations of objects in descending order of the size of object combination starting from first column on the left. In this example, the box in the first column (and second row) shows 3 instances of OBJ_D, 1 instance of OBJ_A and 2 instances of OBJ_B are related to each other; similarly second column boxes shows counts for exclusively related instances among each combination of two objects; and the third column shows non-related instance counts for each object.

Selecting (clicking) the box (at 2nd column and 2nd row) shows dataset rows and columns of the exclusively related instances (Fig.9) in the form of a table.

Patent: 11,954,110

This patent differs from 11,693,890 in the presentation form. This patent covers method for presenting interactive object relations summary in the form of intersecting circles where each circle represents an object and intersecting areas represent combinations of related objects.

This patent is not implemented as part of MimamsuProPlus application software.

Object Group Size = 3	Object Group Size = 2	Object Group Size = 1
Objects Count(total)		
Object Count		
OBJ_D_ 5		
OBJ_A_ 4		
OBJ_B_ 5		
Related Objects Count		
Object Count	Object Count	Object Count
OBJ_D_ 3	OBJ_A_ 2	OBJ_A_ 0
OBJ_A_ 1	OBJ_B_ 1	
OBJ_B_ 2		
	Object Count	Object Count
	OBJ_D_ 2	OBJ_B_ 2
	OBJ_A_ 3	
	Object Count	Object Count
	OBJ_D_ 0	OBJ_D_ 1
	OBJ_B_ 0	

Fig. 8

	OBJ_A A_ID	OBJ_B B_ID	OBJ_D D_ID	OBJ_A A_COL1	OBJ_B B_COL1	OBJ_B B_COL2	OBJ_D D_COL1
1	101	101	101	AA1	BB1	321	DD1
2	101	102	101	AA1	BB2	231	DD1
3	101	102	103	AA1	BB2	231	DD3
4	101	102	104	AA1	BB2	231	DD4
5	102	103		AA2	BB3	123	
6	103	103		AA3	BB3	123	
7	102		101	AA2			DD1
8	103		102	AA3			DD2
9	104		102	AA4			DD2
10		104			BB4	312	
11		105			BB5	213	
12			105				DD5

	OBJ_A A_ID	OBJ_B B_ID	OBJ_A A_COL1	OBJ_B B_COL1	OBJ_B B_COL2
1	102	103	AA2	BB3	123
2	103	103	AA3	BB3	123

Fig. 9

BER	DATA ROOM	PTO	NICKNAME	REPRESENTATIVE PATENT	PRIORITY DATE	EVENT DATE	BID USD/RMB	BID EXP. DATE	ASK USD/RMB	ASK EXP. DATE	PRICE SPREAD	ASSETS	TYPE
鲟	数据服务室	知识产 权局	拍品名称	专利	优先权日期	活动日	竞价	竞价 截止 日	要价	要价截止日	价差	资产	类型

J.S. Held, its affiliates and subsidiaries are not certified public accounting firm(s) and do not provide audit, attest, or any other public accounting services. J.S. Held, its affiliates and subsidiaries are not law firms and do not provide legal advice. Securities offered through our affiliate, Ocean Tomo Investment Group, LLC, member FINRA/SIPC. All rights reserved.

OceanTomoBidAsk.com

OCEAN TOMO®

A PART OF JSHELD

Contact

Layna Guo

Senior Research Analyst - Transaction Marketing

Ocean Tomo I Chicago, IL

E: layna.guo@jsheld.com

O: +1 3123278179